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Models for Received Radar Data

• Received data r = ΓHc + w, where
—– c = complex target reflectance
—– Γ = linear observation mechanism
—– w ∼ CN(0, N0I)

• Examples of Γ:
—– Simple range profiling: Samples of transmitted wave-
form (representing convolution)
—– Delay-doppler imaging: Transmitted waveform multi-
plied by sinusoids
—– Tomographic imaging: Transmitted waveform with
partial Radon transform

• In target detection, c is often treated as random vector.
In target imaging, c is more often treated as an unknown
deterministic parameter. Here we explore random models
for c for imaging purposes.
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Models for Target Reflectance

From Shapiro:

• Diffuse/speckle: cd ∼ CN(0,Σ)
—– Σ is a diagonal covariance
—– s = diag(Σ) called the scattering function

—– Goal: estimate s

• Specular/glint: cs = b× exp[jθ]
—– θ ∼ i.i.d. uniform over [0, 2π)
—– b is a deterministic glint reflection coefficient

—– × is elementwise multiplication
—– Goal: estimate b

• Mixed model: c = cd + cs

—– Goal: estimate s and b

—– Tends to be overparameterized
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EM Algorithm for Diffuse Imaging

• For diffuse imaging, r ∼ CN(0,ΓHΣΓ+N0I), yielding a
structured covariance estimation problem

• No obvious closed-form formula for ML estimate

• Iterative EM algorithm by Snyder-O’Sullivan-Miller:

σnew
i = σold

i − (σold
i )2[ΓK−1ΓH − ΓK−1rrHK−1ΓH ]ii,

where

K = ΓHΣoldΓ + N0I

• Enjoys usual properties of EM algorithms
—– Likelihood increases at each iteration
—– Iterates guaranteed to be nonnegative
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What About Specular Imaging?

• Specular r is vastly more complicated
—– Not aware of a closed form for the density on r

• If the columns of Γ have a sufficient non-zero entries:
—– r consists of sums of indep. 0-mean random variables
—– By CLT, marginals on r approx. 0-mean Gaussian
—– r “almost Gaussian” in the spirit of Mallows

• Motivates trying the diffuse EM algorithm on the specular
case
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Phantoms for Simulations

• Three point scatterers:

• Rotating sphere:
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Transmitted Waveform

• Specular realization:
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• Autocorrelation:
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Data from Three Point Scatterer

• Data from three point scatterer:
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Results for Three Point Scatterer

• Matched filter output:

• At 1, 5, 10 and 20 EM iterations:
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Data for the Sphere

• Two diffuse realizations:
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• Two specular realizations:
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Results for Diffuse Sphere
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Results for Specular Sphere
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Regularization Techniques

• Grenander’s Method of Sieves
—– B-spline basis for f (Moulin 92)
—– Wavelet basis for log(f) (Moulin 93)

• Penalized likelihood methods
—– Subtract penalty from likelihood

P (r|f) = L(r|f)− αΦ(f)

—– Good’s roughness penalty:

ΦG(f) =

∫

[
d

dx

√

f(x)]2dx

—– Good’s is equivalent to O’Sullivan’s I-divergence penalty
—– Silverman’s roughness penalty:

ΦS(f) =

∫

[
d

dx
log f(x)]2dx

—– Simple modification of EM algorithm produces penal-
ized likelihood estimates; amounts to nonlinearly smooth-
ing the result of the maximization step at each iteration
—– Admits a Bayesian interpretation
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Expectation-Maximization-Smoothing

Algorithms

• Suggested by Silverman for emission tomography

• Try different kinds of ad hoc smoothing steps

• A particular choice of smoothing may not correspond to
any particular penalized likelihood method

• Good performance shown in emission tomography

• However, it’s hard to prove whether such algorithms con-
verge, and even harder to show what they converge to
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Directions for Future Work

• Implementation and comparison of various regularization
techniques

• Current execution time of MATLAB implementation on
Sun Enterprise 3500:

Image size Total time Time for inverse

20 x 20 15 seconds 6 seconds

32 x 32 8 minutes 4 minutes

40 x 40 32 minutes 13 minutes

• Improve computation time
—– Must find fast way of doing matrix inverse (or avoid-
ing an explicit inverse altogether)
—– Speed up multiplies by Γ

—– Fast EM Variants (SAGE, etc.)

• Statistical formulation provides criteria for radar wave-
form design (via Cramer-Rao bounds, etc.)

• Other applications
—– Radar astronomy
—– Direction finding?
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